Covalently functionalized gold nanoparticles: synthesis, characterization, and integration into capillary electrophoresis
نویسنده
چکیده
Nanomaterials are widely used as pseudostationary and stationary phases in electrically driven separations. The advantages of using nanomaterials are numerous including tunable sizes, multiple core compositions, flexible injection schemes, and diverse surface chemistries. Nanomaterials, however, exhibit large surface energies which induce aggregation and may yield unpredictable function in separations. Because nanomaterials can modify buffer conductivity, viscosity, and pH; successful and systematic incorporation of nanomaterials into separations requires rigorous synthetic control and characterization of both the nanoparticle core and surface chemistry. This dissertation investigates the impact of gold nanoparticle surface chemistry and morphology to capillary electrophoresis separations. Gold nanoparticle core composition, shape, size, self assembled monolayer (SAM) formation, and SAM packing density are quantified for gold nanoparticles functionalized with thioctic acid, 6mercaptohexanoic acid, or 11-mercaptoundecanoic acid SAMs. TEM, H NMR, extinction spectroscopy, zeta potential, X-ray photoelectron spectroscopy, and flocculation assess the morphology, surface chemistry, optical properties, surface charge, SAM packing density, and stability of the nanoparticles, respectively. Using well-characterized nanostructures, pseudostationary phases of gold nanoparticles in capillary electrophoresis are studied. Gold nanoparticles functionalized with thioctic acid and either 6-mercaptohexanoic acid or 6-aminohexanethiol impact the mobility of analytes in a concentration and surface chemistry-dependent manner. From these data, a novel parameter termed the critical nanoparticle concentration is developed and is used to estimate nanoparticle stability during capillary electrophoresis separations.
منابع مشابه
Synthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids
Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...
متن کاملSynthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids
Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...
متن کاملSynthesis and characterization of Nanoparticles Poly Ethylene Imine-Functionalized MCM-41by Covalent Anchoring as a Solid Catalyst for Multi-Component Reactions
A novel magnetically immobilized polyethyleneimine (PEI) fabricated by covalently anchoring on MCM-41 (MCM-41@PEI) was prepared. The synthesized catalyst was characterized by Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The immobilized PEI was shown to be an ef...
متن کاملSynthesis and Characterization of Gold Nanoparticles using Plant Extract of Terminalia arjuna with Antibacterial Activity
The use of plant extracts for nanoparticles synthesis are green, economical and cost effective approach. The present study reports the bio-synthesis of gold nanoparticles (Au NPs) using leaf extract of Terminalia arjuna. After exposing the gold ions to aqueous solution of leaf extract, rapid reduction of gold ions into gold nanoparticles is observed within few minutes. The characterizat...
متن کاملPreparation of peptide-functionalized gold nanoparticles using one pot EDC/sulfo-NHS coupling.
Although carbodiimides and succinimides are broadly employed for the formation of amide bonds (i.e., in amino acid coupling), their use in the coupling of peptides to water-soluble carboxylic-terminated colloidal gold nanoparticles remains challenging. In this article, we present an optimization study for the successful coupling of the KPQPRPLS peptide to spherical and rodlike colloidal gold na...
متن کامل